High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators
نویسندگان
چکیده
In this paper, a high-order dielectric metasurface based on silicon nanobrick array is proposed and investigated. By controlling the length and width of the nanobricks, the metasurfaces could supply two different incremental transmission phases for the X-linear-polarized (XLP) and Y-linear-polarized (YLP) light with extremely high efficiency over 88%. Based on the designed metasurface, two polarization beam splitters working in high-order diffraction modes have been designed successfully, which demonstrated a high transmitted efficiency. In addition, we have also designed two vortex-beam generators working in high-order diffraction modes to create vortex beams with the topological charges of 2 and 3. The employment of dielectric metasurfaces operating in high-order diffraction modes could pave the way for a variety of new ultra-efficient optical devices.
منابع مشابه
High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode.
Metasurfaces are two-dimensional structures enabling complete control on light amplitude, phase, and polarization. Unlike plasmonic metasurfaces, silicon structures facilitate high transmission, low losses, and compatibility with existing semiconductor technologies. We experimentally demonstrate two examples of high-efficiency polarization-sensitive dielectric metasurfaces with 2π phase control...
متن کاملDielectric metasurface based high-efficiency polarization splitters
In this paper, a novel polarization splitter has been designed at the telecommunication wavelength of 1500 nm successfully based on the dielectric metasurface consisting of a silicon nanobrick array, which can generate two different wavefronts for two orthogonal input polarizations with well over 90% transmitted efficiency by exactly selecting the sizes of the used nanobricks. The splitting mec...
متن کاملDielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission.
Metasurfaces are planar structures that locally modify the polarization, phase and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design. Transmissive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurf...
متن کاملVisible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting.
Ultrathin metasurfaces have recently emerged as promising materials that have huge potential to enable novel, flat optical components, and surface-confined, miniature photonic devices. Metasurfaces offer new degrees of freedom in molding the optical wavefronts by introducing abrupt and drastic changes in the amplitude, phase, and/or polarization of electromagnetic radiation at the wavelength sc...
متن کاملPolarization selective beam shaping using nanoscale dielectric metasurfaces.
Metasurfaces consisting of ultrathin nanostructures are utilized to control the properties of light including its phase, amplitude and polarization. Hereby, we demonstrate the capability of such structures to perform arbitrary polarization selective beam shaping using dielectric nanoscale metasurfaces implemented in silicon. By illuminating the structure with right handed circular polarization ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017